Upregulation of microRNA-143 reverses drug resistance in human breast cancer cells via inhibition of cytokine-induced apoptosis inhibitor 1
نویسندگان
چکیده
Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), originally termed anamorsin, is an anti-apoptotic molecule that acts as a downstream effector of the receptor tyrosine kinase-Ras signaling pathway. Overexpression of CIAPIN1 contributes to multidrug resistance (MDR) and microRNA (miR)-143 is typically considered a tumor suppressor in breast cancer. The present study aimed to evaluate the therapeutic potential of miR-143 as a treatment for drug-resistant breast cancer via the downregulation of CIAPIN1 in vitro. The expression levels of miR-143 were measured using quantitative polymerase chain reaction and the expression levels of CIAPIN1 were detected via western blot analysis. Bioinformatic analyses was additionally conducted to search for miR-143, which may potentially target CIAPIN1. Luciferase reporter plasmids were created and used to verify direct targeting. In addition, Taxol-induced drug-resistant (TDR) breast cancer cell proliferation was evaluated using the Cell Counting Kit-8 assay in vitro. The present study identified an inverse association between miR-143 and CIAPIN1 protein expression levels in breast cancer MCF-7, MDA-MB-231 and MDA-MB-453 TDR cells. Specific targeting sites for miR-143 in the 3'-untranslated region of the CIAPIN1 gene were identified, which exhibit the ability to regulate CIAPIN1 expression. It was revealed that the repression of CIAPIN1 via miR-143 suppressed the proliferation of breast cancer TDR cells. The findings of the present study verified the role of miR-143 as a tumor suppressor in breast cancer MDR via inhibition of CIAPIN1 translation.
منابع مشابه
Sambucus Nigra Synergizes Cisplatin to Improve Apoptosis and Metabolic Disorders, and Reduce Drug Resistance in Two Human Breast Cancer Cell Lines
Background: Despite modern developments in its management, still major concerns remain about drug resistance in chemotherapy. Natural adjuvants combined with chemotherapy might be the answer. We examined the anti-cancer, anti-proliferative and synergistic effects of Sambucus nigra extract with cisplatin chemotherapy (CDDP) on MCF-7 and MDA-MB-231 human cancer cell lines. Methods: MCF-7 and MDA...
متن کاملSynergistic Anti-Cancer Effects of Second-Generation Proteasome Inhibitor Carfilzomib with Doxorubicin and Dexamethasone Via p53-Mediated Apoptosis in Pre-B Acute Lymphoblastic Leukemia Cells
Background: The ubiquitin-proteasome system (UPS) plays a crucial role in regulating the levels and functions of a large number of proteins in the cell, which are important for cancer cell growth and survival. The proteasome is highly activated in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), which is the most common malignancy in children. The attempt to inhibit proteasome as a ther...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کامل